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Abstract: We study the motion of a D3 brane moving within a Type IIB string vacuum

compactified to 4D on K3 × T2/Z2 in the presence of D7 and O7 planes. We work within

the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk

moduli of the compactification, including the effects of modulus-stabilizing fluxes. We

seek inflationary solutions to the resulting equations, performing our search numerically in

order to avoid resorting to approximate parameterizations of the low-energy potential. We

consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3

branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile

D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the

antipodal point. The inflaton turns out to be a linear combination of the brane position and

the axionic partner of the K3 volume modulus, and the similarity of the potential along

the inflaton direction with that of racetrack inflation leads to the prediction ns ≤ 0.95

for the spectral index. The slow roll is insensitive to most of the features of the effective

superpotential, and requires a one-in-104 tuning to ensure that the torus is close to square

in shape. We also consider D-term inflation with the D3 close to the attractive D7, but find

that for a broad (but not exhaustive) class of parameters the conditions for slow roll tend to

destabilize the bulk moduli. In contrast to the axionic case, the best inflationary example

of this kind requires the delicate adjustment of potential parameters (much more than the

part-per-mille level), and gives inflation only at an inflection point of the potential (and so

suffers from additional fine-tuning of initial conditions to avoid an overshoot problem).
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1 Introduction

The advent of tools for fixing moduli in string theory has opened up the possibility for

surveying where slow-roll inflation occurs among string vacua, with the result (so far) that

it appears to be relatively rare, but not impossible. This survey has revealed a variety of

potential inflationary mechanisms, with the inflaton residing either among open or closed

string modes [1].

Among the most interesting of these mechanisms is that of D3-D7 inflation [2], for

which the inflaton is the separation between mobile D3 branes as they approach static

stacks of D7 branes. Besides sharing many of the attractive features of brane-antibrane

models [3–6], this scenario potentially has the additional advantage that the final D3-D7

collision may be better understood, with the possibility of the D3 dissolving into the D7

to leave a supersymmetric state. Furthermore, stacks of coincident D7 and O7 planes can

source flat transverse geometries and constant dilaton configurations, among which are the

well-studied compactifications on K3× T2/Z2. One might expect the prospects for finding

slow roll for D3 motion for such geometries to be better than for a generic Calabi-Yau.
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Additional progress became possible with the application of Type IIB modulus-

stabiliza-tion techniques [7, 9] to K3 × T2/Z2 geometries [10–12]. This opened up the

possibility of understanding the low energy dynamics within the framework of the effective

4D supergravity, with all the additional control over the calculation that this brings. Until

recently one ingredient remained missing for performing a more systematic 4D study of D3

motion in these systems, and this was the 4D supergravity formulation of the forces acting

on a mobile D3 brane once supersymmetry becomes broken (such as by the addition of

magnetic fluxes in the 7-brane world volume). This missing step was removed with the

analysis [13–15] of how the D3 back-reacts on the D7 geometry, and thereby introduces a

dependence on the D3 position into the energetics of D7 physics (like gaugino condensation

or magnetic fluxes).

A first study of D3 motion in K3 × T2/Z2 was recently performed in ref. [16], who

also made a preliminary search for inflationary solutions using a semi-phenomenological

potential. This potential was meant to parameterize the important features of the low-

energy supergravity in the limit when the D3 and D7 are in close proximity. In particular,

it includes a combination of a logarithmic ‘Coleman-Weinberg’ (CW) potential describing

the attraction of a D3 towards a D7 on which supersymmetry has been broken by fluxes,

the D-term energy generated by this flux [17], plus the nonperturbative superpotential

generated by gaugino condensation on a D7 stack located at a different fixed point. Their

search identified a putative slow-roll inflationary regime when the mobile D3 approaches

very closely one of the D7/O7 stacks.

In this note we extend their analysis in several ways.

• First we follow the evolution of more of the twenty-odd bulk moduli of K3 × T2/Z2.

After describing the low-energy supergravity in some generality, we follow the dy-

namics of two of these complex moduli in addition to that of the D3-brane position.

We do so because it is only when at least two of the bulk moduli are kept that the

full no-scale form of the leading low-energy potential is manifest.

• Second, we search numerically for inflationary solutions, allowing the use of the actual

F - and D-term potentials of the low-energy supergravity, rather than an approximate

semi-phenomenological potential. Since we need not rely on expansions in the D3-D7

distance, we can both test the domain of validity of the approximate forms used by

earlier workers, and can search for inflation when the D3 is far from the D7.

• Third, we consider two types of ‘uplifting’ physics, required to assure the potential is

minimized at a Minkowski vacuum after inflation ends. Following [16] we examine D-

term uplifting as generated by D7 fluxes. But due to present difficulties in obtaining

these from explicit string vacua on K3 × T2/Z2 we also explore uplifting due to

anti-D3 branes à la KKLT [9].

Our search reveals several examples of slow-roll inflation, in all cases requiring some

degree of tuning of the parameters of the potential. We focus on inflationary trajectories

with the D3 moving along the torus. This is because the Kähler potential has a shift

symmetry in the torus coordinate which may protect that direction from getting large
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corrections from the non-perturbative F -term potential. Our best example occurs when

the D3 falls between two stacks of D7’s, due to forces ultimately driven by nonperturbative

physics (like gaugino condensation or Euclidean D-branes) occurring on yet a third such

stack. Inflation occurs when the D3 starts at the antipodal point, within the torus, of

the D7’s on which the nonperturbative physics occurs. In this case the tuning required is

quite mild, with the inflationary roll largely insensitive to other parameters once the torus

is adjusted to be close to square. The inflaton direction turns out to be a combination of

the D3 position and the axionic partner of the K3 volume modulus, leading to a situation

similar to the racetrack inflation model [18]. Since the starting position is at a local

maximum of the inflaton direction, eternal topological inflation can remove the need for

explaining the initial conditions. Uplifting is provided in this example by the presence of

an anti-D3 brane.

We also search for inflation in the regime of ref. [16], where the D3 is close to a stack

of D7’s on which supersymmetry-breaking fluxes provide the inflationary energy density.

In this case we find inflation much more difficult to achieve, largely because we are unable

to realize the parameter choices required for their slow roll within our 4D supergravity.

We are able to obtain slow-roll inflation in this regime, however, although only by using

a delicately tuned (to within a part per million) choice of potential parameters. What is

troublesome, however, is that the inflationary regime that results arises near an inflection

point of the potential, rather than a local maximum. This has the disadvantage of requiring

a several percent tuning of the initial conditions to avoid having an overshoot problem.

Our discussion is organized as follows. In section 2 we review the underlying theo-

retical ingredients leading to the low-energy effective action for the inflaton. In section

3 we develop the Lagrangian explicitly, in terms of the F-term and D-term contributions

and possible uplifting by anti-D3 branes in both warped and unwarped backgrounds, but

restricted to the fields whose dynamics we wish to follow. Section 4 describes the two

examples of inflation described above: the racetrack-like model starting from the antipodal

point of the attracting D7 brane (using D3 uplifting), and the inflection point model (with

D-term uplifting) where the D3 is near the D7. We present our conclusions in section 5.

The appendix contains results concerning the no-scale property of the Kähler potential,

our conventions for Jacobi theta functions, and scaling properties of the potential under

certain re-scalings of the Lagrangian parameters.

2 Low energy dynamics on K3 × T2/Z2

In this section we develop the general properties of the 4D supergravity describing the

low-energy behaviour of K3 × T2/Z2, before specializing in the next section to the moduli

playing a direct role in the inflationary scenario.

2.1 The field content

Our starting point is a Type IIB string vacuum compactified on K3×T2/Z2, in the presence

of moduli-stabilizing 3-form fluxes [7, 9], such as studied by [10, 11]. The orientifold Z2

acts on the torus by reflecting its (complex) coordinates, z → −z, leading to O7-planes
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located at four fixed points. Taking the torus to be defined by the parallelogram z ≃ z + 1

and z ≃ z + τ , with τ the complex modulus satisfying Im τ > 0, these fixed points are

situated at z = 0, 1
2 , 1

2τ and 1
2(1 + τ). The D7 tadpole conditions are satisfied when each

O7 plane is accompanied by 4 D7’s, all wrapping the K3. If the 4 D7’s are coincident with

the corresponding O7, they do not source the dilaton field, which can therefore remain

constant along the toroidal directions. The D3 tadpole condition requires the number of

D3 branes plus a flux integral to sum to 24 [10].

K3 is a Ricci flat space having two complex dimensions which naturally arises in

supersymmetric compactifications of string theory to 4D [19], being in many ways the

lower-dimensional analog of the three (complex) dimensional Calabi Yau spaces. It has a

very rich topology [20], with Hodge numbers h10 = h01 = 0, h00 = h20 = h02 = h22 = 1

and h11 = 20, leading to an Euler number χ = 24. These are the same as for the orbifold

T4/Z2, say, whose 16 fixed points can be regarded as the degenerate limit of 16 of the 22

nontrivial 2-cycles on K3.

For Type IIB string compactifications this topology leads to low-energy moduli, Tα =

ξα + iβα. Some of these moduli are stabilized (at leading order in the α′ and string loop

expansions) once the 3-form fluxes are turned on, and these fluxes can preserve zero, one

or two low-energy 4D supersymmetries [10]. The rest of the moduli can be stabilized

in principle by nonperturbative effects [11]. The dynamics of this stabilization can be

described by a low-energy 4D supergravity provided that the supersymmetry breaking

scales are kept parametrically small compared with the Kaluza-Klein (KK) scale, as we

assume to be the case in what follows.

To this geometry we imagine adding one or more of the following optional features.

• For inflationary purposes, we imagine adjusting the fluxes to allow the presence of a

mobile D3 brane situated at a point in the extra dimensions. We argue below that

the physics that stabilizes the various Kähler moduli on K3 tends also to stabilize

the motion of this brane in the K3 directions, although it can be relatively free to

move along the toroidal directions, with complex coordinate z.

• It is often useful to entertain the presence of an anti-D3 brane, in order to uplift

the minimum of the potential to zero. Ultimately, the necessity for doing so reflects

our poor understanding of the cosmological constant problem, and we regard such

an anti-brane to represent a parametrization of whatever mechanism properly solves

this problem in the string vacuum of interest. When doing so it is often useful to

sequester the antibrane into a warped throat on K3 × T2/Z2, such as was studied

in ref. [8]. This has several advantages. Besides helping to localize the D3, which

reduces its energy by sitting in the throat, it also reduces its impact on the dynamics

of the mobile D3 brane, by suppressing their direct ‘Coulomb’ attraction.

• It is also possible to add background magnetic 2-form fluxes, F , for gauge fields

residing on the D7 branes, in order to uplift the potential at its minimum [17]. If

such fluxes are present they typically gauge some of the axion symmetries under
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which the imaginary parts of the moduli shift, βα → βα + ηα. In particular,1 if F is

turned on in the world volume of a brane wrapping a 4-cycle Σd, and if its expansion

in terms of basis harmonic 2-forms is F = fαωα, then ηα = kαβdfβ, where kαβγ

denotes the intersection number for a triplet of 2-cycles [21].

The significance of the gauged shift symmetry is that it implies that the positive

magnetic energy (which is proportional to the integral of FmnFmn over the D7 volume) is

captured by a supersymmetry-breaking D-term in the low-energy 4D supergravity. When

nonzero this energy breaks supersymmetry in the 4D theory, just as does the magnetic flux

in the underlying brane picture. The situation becomes more complicated should other

multiplets, Qx, also exist that are charged under this symmetry. Such scalars complicate

the picture because they must also appear in the corresponding D term potential, and

typically prefer to adjust their expectation values to try to cancel out the magnetic energy

and thereby restore the supersymmetry broken by the flux. Furthermore, such scalars are

often required to exist, either by anomaly-cancellation arguments or by gauge invariance

if the axion fields should appear in the low-energy superpotential [17, 21, 22].

2.2 The low-energy supergravity

The interactions of these complex moduli with one another and with gravity are described

at low energies by an effective 4D theory, that is close to an N = 1 supergravity provided

that the supersymmetry-breaking effects of the compactification to 4D are sufficiently weak.

As such it is characterized by specifying its Kähler potential, K, its holomorphic superpo-

tential, W , and gauge kinetic function, fab.

Kähler potential. The Kähler potential for the leading order 4D supergravity has the

general Type IIB form,

K = −2 lnV , (2.1)

where V is the Calabi-Yau volume in units of the string length, ls = 2π
√

α′. When expressed

in terms of the decompositions, tα, of the Kähler form in terms of a basis of 2-cycles,

J = tαωα, the volume becomes V = 1
6kαβγtαtβtγ , where kαβγ denotes the appropriate

intersection number for the basis 2-cycles.

For use in the supergravity action the above expression for V must be expressed in

terms of the complex coordinates, Tα = ξα + iβα, and the complex position, z, of the D3

brane, corresponding to the chiral scalars of the effective theory. The expression for V in

terms of Tα and z can be obtained explicitly in the case of K3 × T2/Z2. Because this is a

product geometry its volume factorizes,

V =
1

2
kij ts titj , (2.2)

and is linear in the volume, ts, of the torus. Here {tα} = {ts, ti}, and ks ij = kij is a known

matrix that describes the intersection numbers of 2-cycles within K3 [20].2 In principle,

1We thank Michael Haack and Marco Zagermann for helpful conversations on this point.
2We adopt the convention that Greek indices α, β, · · · run over moduli of K3 × T2/Z2; mid-alphabet

Latin indices, i, j, · · · , label only the moduli of K3 (and not ts or ξs), while early-alphabet Latin indices,

a, b, · · · , collectively denote ξs and z. Capitalized indices, A, B, · · · generically denote all moduli together.
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the sum on i, j is over all of the independent 2-cycles on K3 and so runs from 1 to 22.

However we can imagine some of the corresponding moduli to have been stabilized (by

fluxes or nonperturbative effects) at energies that are hierarchically large compared with

those of later interest for inflationary dynamics, and in this case i, j range only over the

number of remaining moduli that are lighter than these.

When restricted to a single D3 moving only in the toroidal directions, the relation

between the ξα and the tα becomes [23]

ξi =
∂V
∂ti

= kij tstj and ξs =
∂V
∂ts

+ ω(z, z̄) =
1

2
kij titj + ω(z, z̄) , (2.3)

where ω(z, z̄) is the Kähler form on the 2-torus (whose explicit form is given below).

Inverting these expressions for the torus volume, ts, and the K3 2-cycle volumes, ti,

ts =

(

kijξ
iξj

X

)1/2

and ti =
kijξ

j

ts
, (2.4)

with kijtitj = X = 2[ξs − ω(z, z̄)] and kijkjk = δi
k. Using these in eqs. (2.1) and (2.2),

and dropping additive constants in K, gives

K = − lnX − ln Y (2.5)

where Y = 1
2 kijξ

iξj . In terms of the complex fields, T i = ξi + iβi and S = T s = ξs + iβs,

we have

X = S + S − 2ω(z, z̄) and Y =
1

8
kij(T

i + T
i
)(T j + T

j
) . (2.6)

The first Kähler derivatives then are KA = ∂AK (with A = z, S, T i):

KS = − 1

X
, Kz =

2ωz

X
and Ki = −kijξ

j

2Y
, (2.7)

where ωz = ∂zω. The Kähler metric becomes

KAB =

(

Kab̄ 0

0 Kī

)

(2.8)

with (a, b = S, z)

Kab̄ =

(

1/X2 −2ωz̄/X
2

−2ωz/X
2 (2ωzz̄X + 4ωzωz̄)/X

2

)

(2.9)

and

Kī =
−kijY + kikkjnξkξn

4Y 2
. (2.10)

These have inverses

KBA =

(

K b̄a 0

0 K ̄i

)

(2.11)

with

K b̄a =

(

X(2ωzz̄ωzωz̄ + X) Xωzz̄ωz̄

Xωzz̄ωz
1
2Xωzz̄

)

(2.12)
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and

K ̄i = 4(−kijY + ξiξj) . (2.13)

In terms of the real and imaginary parts of the torus coordinate, z = z1 + iz2, and

complex structure modulus, τ = τ1 + iτ2, the Kähler form on the torus is

ω = − ic(z − z̄)2

2(τ − τ̄)
= −c(z − z̄)2

4τ2
=

cz2
2

τ2
, (2.14)

where c is a constant to be determined below. Its derivatives become ωz = −ωz̄ = −ic(z −
z̄)/(τ − τ̄), ωzz̄ = ic/(τ − τ̄) and so ωzz̄ = (τ − τ̄)/(ic), ωzz̄ωz̄ = z − z̄ and ωzz̄ωzωz̄ =

−ic(z − z̄)2/(τ − τ̄) = 2ω.

Finally, there are two further properties of K worth special mention. First, as is shown

in appendix A.1, this Kähler potential satisfies the no-scale identity

KαβKαKβ = 3 . (2.15)

Second, K displays the periodicity of the underlying torus, although in a subtle way [15].

In particular, since X = 2[ξs − ω] = S + S − 2ω is explicitly periodic under the shifts

z → z + 1 of the torus, K also shares this property. Similarly, eq. (2.14), shows that K

and X are also invariant under z → z + τ provided at the same time we shift

S → S − ic(2z + τ) . (2.16)

Holomorphic functions. Full specification of the low-energy 4D supergravity also re-

quires its holomorphic superpotential, W , and gauge kinetic functions, fab.

• Gauge kinetic function. The gauge kinetic function, fab(S, z), may be computed as

a threshold effect when computing open-string loops [13], or as the classical back-

reaction of the D3 on the D7 geometry in the dual closed string picture [14]. For

the D7’s located at fixed point r in K3 × T2/Z2 either approach gives fab,r = frδab,

where (up to z- and S-independent quantities)

fr = S − 1

a

{

ln ϑ1[π(zr − z)|τ ] + ln ϑ1[π(zr + z)|τ ]
}

+ fr . (2.17)

where the four fixed points on T2/Z2 are located at zr = 0, 1
2 , 1

2τ and 1
2 (1 + τ), and

fr denotes a potential contribution that is independent of the fields S, T i and z [21].

Typically a = 2π, and ϑ1 denotes a Jacobi theta function, for which our conventions

are specified in appendix A.2.

• Superpotential. The appearance of a superpotential is the hallmark of an underlying

stabilization mechanism, and in the present instance we envision the stabilization

to give

W = W0 + w(S, z) +
∑

i

Bi e−biT i

. (2.18)

Here W0 is contributed by the flux compactification and so is completely independent

of the Kähler moduli. |W0| must be chosen as small as the various nonperturbative
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terms in W in order to trust the shape of the potential while neglecting correc-

tions to K.

The T i-dependent terms are imagined to be generated by euclidean D3 branes

(ED3 s) wrapped about the torus together with one of the various 2-cycles of K3 [11],

in which case bi = 2π. The coefficients Bi could depend on the position of the D3

in the K3 directions, and we imagine this dependence to have provided the forces

which prevent D3 motion in these directions (allowing the neglect of this motion in

what follows).

Wrapping such ED3 branes about the K3 similarly can stabilize its volume, as can

gaugino condensation on the D7’s localized at the fixed points of the torus. (Which

of these obtains depends on the details of the fluxes that are applied [12].) This is

what generates the S-dependent term, w(S, z), of eq. (2.18), which is predicted to

take the following form3

w(S, z) =
∑

r

wr(S, z) =
∑

r

{

Are
−afr(S,z)

}1/Nr

=
∑

r

{

e−aSFr(z, τ)
}1/Nr

(2.19)

where for future notational convenience we introduce the function

Fr(z, τ) ≡ Ar ϑ1[π(zr − z)|τ ]ϑ1[π(zr + z)|τ ] . (2.20)

Here Nr = 1 if wr(S, z) arises due to an ED3, but Nr depends on the gauge group

involved if wr(S, z) is generated by gaugino condensation. For instance, Nr = N if

gaugino condensation arises for an SU(N) or SO(N + 2) gauge group.

The quantity w is invariant under the shifts z → z + 1 and z → z + τ provided

that S also shifts appropriately. The transformation properties of appendix (A.2)

show in particular that invariance under the transformation z → z + τ requires

S → S−2πi(2z+τ)/a. Comparing this with condition (2.16), required for invariance

of K, shows that invariance of the complete scalar potential requires the constants c

and a must be related by [15]

c =
2π

a
, (2.21)

and so c = 1 if a = 2π.

Whether gaugino condensation occurs on the stack of branes at a given fixed point

depends on the low energy gauge group and field content. We assume there is enough

freedom to turn on condensation at one or more fixed points.

2.3 Low-energy scalar interactions

The low-energy scalar interactions are generically governed by L = LSG + δLsb, where LSG

denotes the relevant part of the 4D supergravity lagrangian,

LSG = −√−g
[

VF (T, T ) + VD(T, T ) + KAB ∂µTA∂µT
B

+ · · ·
]

, (2.22)

3Notice that our definition of a does not contain the factor of 1/Nr in the case of gaugino condensation

on the D7 stack at fixed point r; our notation differs from that of ref. [16] in this respect.
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and the SUSY-breaking term

δLsb = −√−g
[

Vup(T, T ) + · · ·
]

(2.23)

denotes the derivative expansion of any terms which cannot be put into the 4D N = 1

supergravity form, such as low-energy terms due to the presence of a supersymmetry-

breaking anti-D3 brane. Any such terms must be perturbatively small in order for the 4D

supergravity form to be a good approximation, such as might occur if the D3 were localized

in a strongly warped throat.

The F - and D-term potentials are given as usual by

VF = eK
[

KABDAWDBW − 3|W |2
]

, (2.24)

and

VD =
1

2

∑

r

Fab
r Da,rDb,r , (2.25)

where the sum is over the 4 fixed points of T2/Z2 and Fab
r denotes the inverse matrix for

Re fab,r. The auxiliary fields, Da,r, are given by

Da,r = δaK =
∂K

∂Tα
ηα

a +
∂K

∂Qx
(taQ)x + (Qta)x

∂K

∂Qx

, (2.26)

where ta denotes the appropriate gauge generator acting on any low-energy charged chiral

fields, Qx, that happen to be present (often arising as low-energy open string states). The

quantity ηα denotes the shift of the moduli fields, whose imaginary parts transform as

δaβ
α = ηα

a . Such shifts arise when the corresponding axionic shift symmetry is gauged by

background 2-form fluxes localized on D7 brane, as described in more detail in section 2.1

above. Notice in particular that for fluxes localized on the D7’s wrapping the K3, ηα

never points in the direction of the K3 volume modulus, S: ηs = 0. This follows from the

vanishing for K3 × T2/Z2 of all intersection numbers of the form kαss = 0.

The z-dependence of the D-term potential, eq. (2.25), has a simple physical implication.

If Da,r = 0 after the Qx are minimized, then VD is z-independent. If Da,r 6= 0, on the

other hand, the z-dependence of VD arises from the gauge coupling function, fr. For

small D3-D7 separation this varies logarithmically, with Re (fr − S) ∝ − ln |z − zr|. This

describes a force acting on the D3 due to the D7’s that vanishes (by supersymmetry) in

the absence of the magnetic flux, but is otherwise nonzero. Furthermore, this force arises

due to tree-level closed-string exchange (since the z-dependence of fr arises due to the

classical back-reaction on the bulk geometry by the D3 brane [14]). Equivalently, because

of open-closed string duality, this force can be regarded as being due to open string loops,

and as such can be regarded as the 4D supergravity description of the ‘Coleman-Weinberg’

part of the D3-brane potential used for inflationary purposes in ref. [16].

The difficulty with using VD is that the energetics of the charged fields, Qx, if present,

usually prefers them to adjust to ensure Dr = 0 ref. [17, 21, 22], thereby turning off the

flux-induced D3-D7 force. This is the low-energy 4D supergravity’s way of expressing how

the D7’s can prefer to adjust internally to preserve supersymmetry, and thereby eliminate
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the D3-D7 Coleman-Weinberg interaction. Furthermore, such charged field very often

must exist. They are typically required, for instance, to understand the gauge invariance

of W once W depends — such as in eq. (2.18) — on fields like T i if these shift under a

gauge symmetry.

SUSY-breaking terms. Following KKLT [9] we take the contribution of any anti-D3

branes (should these be present) to be perturbatively small and contained in Vup, whose

detailed form depends on whether or not the antibrane is located in a strongly warped

region. Warped type IIB compactifications of K3 × T2/Z2 were examined in ref. [8].

The 4D potential due to the tension of an anti-D3 brane is (in the 4D Einstein frame)

Vup =
Ê e4A

V2
, (2.27)

where the constant Ê is proportional to the D3 tension, T3. The warp factor, A, is defined

by the form of the string frame metric,

ds2
10 = e2Aηµνdxµdxν + e−2Agmndymdyn , (2.28)

where gmn is the metric of K3×T/Z2 such that V =
∫ √

g6 d6y. To leading order the warp

factor A depends only on the K3 coordinates, although this changes once one includes

corrections in α′ and the string coupling, gs [8].

When evaluated in a strongly warped throat it happens that e4A ∝ e−ζV2/3, where

ζ = 8πn1/(3gsn2) is a combination of certain integer flux quantum numbers, ni, and so

the total volume-dependence of an antibrane uplifting potential is

Vup =
E

Vp
, (2.29)

with E = Êe−ζ and p = 4/3 (or E = Ê and p = 2) if the anti-D3 is (is not) located

in a warped throat. In the absence of a better understanding of the cosmological con-

stant problem we imagine E to be tuned to ensure that the scalar potential vanishes at

its minimum.

Locating the antibrane within a warped throat has several well-known advantages.

• Warping suppresses the scale of the supersymmetry-breaking physics relative to other

scales, and this helps to sequester its effects from the SUSY-breaking sector [24]. This

is required to justify regarding the SUSY-breaking terms of δLsb as small perturba-

tions to the 4D supergravity action.

• Warping allows the scale of the uplifting to be tuned in small steps, potentially

allowing a closer approach to a vanishing potential at the minimum.

• Warping decreases the Coulomb potential between the D3 and D3, largely because

it suppresses the D3 charge. This is important for inflationary applications because

without the warp factor the Coulomb force tends to ruin slow roll for D3 motion in

the z directions. Asymmetric compactifications with the K3 radius much larger than

the torus radius do not improve this situation [4].
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• Finally, warping tends to localize the D3 by making it settle into the bottom of the

throat. This keeps it from migrating to one of the branes and perhaps annihilating.

Furthermore, although the D3 is mobile, we imagine that the stabilization of the

K3 moduli in VF fixes its position within K3 (see the discussion below eq. (2.18)),

and does so far from the throat.4 This keeps the D3 from migrating to the D3 and

annihilating, leaving it free to play an inflationary role as it moves along the torus.

3 The inflationary model

To make the search for inflationary solutions manageable we imagine all but one of the

moduli T i to be stabilized with masses larger than those relevant for the inflationary

motion, allowing us to specialize the previous setup to only three complex fields: the K3

volume, S, the D3 position on the torus, z, plus the one remaining modulus T . Our

motivation for keeping one of the T ’s is to maintain the no-scale form of the low-energy

supergravity, whose Kähler potential (up to an irrelevant additive constant) then is

K = − ln
[

S + S − 2ω(z, z̄)
]

− 2 ln(T + T ) . (3.1)

Although we follow T numerically when searching for inflationary dynamics, it turns out

to play a negligible role in the actual inflationary slow rolls we eventually find.

To simplify the notation in this section we denote the real and imaginary components

of the fields S and T by ξs = s and ξt = t, so

S = s + iα, T = t + iβ (3.2)

while as before, z = z1 + iz2.

The superpotential, eq. (2.18), for this reduced theory becomes

W = W0 +
∑

r

wr(S, z) + Be−bT , (3.3)

where wr =
[

Fr(z)e−aS
]1/Nr . For simplicity we restrict in what follows to the case where

Nr = N is independent of r. Then the S-dependent part of W becomes

w(S, z) = A(z) e−aS/N (3.4)

with A(z) =
∑

r Fr(z)1/N . Notice that the scalar potential derived from this superpotential

is periodic under α → α + 2πN/a and β → β + 2π/b.

3.1 F-term potential

The F -term potential is found by specializing the earlier results to the three fields of

interest. The derivatives of the superpotential are

Wz =
∑

r

wr

Nr
(∂z ln Fr) = w ∂z ln A , WS = −a

∑

r

wr

Nr
= −aw

N
, WT = −bBe−bT ,

(3.5)

4An explicit construction with the D3 stabilized away from the throat’s tip can be found in ref. [25].
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and (keeping in mind the no-scale form of the Kähler potential) the F -term potential

becomes

VF =
1

X(T + T̄ )2

{

∑

A=S,T,z

KAĀ
[

WAW A + (KAWWA + c.c.)
]

+
[

KSz̄(WSW z + KSWW z + Kz̄WSW + c.c)
]

}

, (3.6)

where X = 2[s−ω(z, z̄)]. Notice that for large K3 volume, s, we have X ≈ 2s and so when

all else is equal it is the KSS ∝ s2 term that dominates.

Axion minimization. The axion fields, α and β, can now be minimized explicitly. The

only terms involving these fields come from VF and are given by

Vax =
1

X(T + T̄ )2

{

KTT KT WT (W0 + w) + KbāKbW a

(

W0 + Be−bT
)

+ c.c.
}

,

where, as before, the indices a, b = S, z. This contains terms proportional to cos(bβ),

cos(aα/N) and cos(bβ −aα/N). It is convenient to use an overall phase rotation to choose

W0 to be real and negative, since for the parameter range of later interest this ensures that

Im T = β = 0 at its minimum. Minimizing α similarly amounts to replacing A → |A| in

the remaining equations.

The supersymmetric AdS minimum. VF as described above has a supersymmetric

AdS minimum, corresponding to the solutions to DAW = 0. The condition DSW =

DT W = 0 to be solved for s = s0(z) and t = t0(z) may be written as

|B| =
a|A(z)|X0

Nb t0
ebt0−as0/N , (3.7)

W0 = −|A(z)|e−as0/N

[

1 +
aX0

N

(

1 +
1

b t0

)]

, (3.8)

where X0 = 2[s0 −ω(z, z̄)]. Using these conditions in DzW = 0 then implies z must satisfy

|A(z)|e−as0/N

[

∂z ln |A(z)| + 2π(z − z̄)

Nτ2

]

= 0 , (3.9)

which uses the explicit form, eq. (2.14), of ω as well as the condition ac = 2π, eq. (2.21).

Eq. (3.9) is always solved by A(z) = 0, but in this case w(S, z) = 0 and so the

S-modulus is not stabilized. If S-stabilization occurs at a single fixed point, r0, then

A(z) = [Fr0
(z)]1/N can vanish when the D3 approaches z = zr. Similar solutions also exist

for ED3’s located at all four fixed points, for which A =
∑

r Fr, since in this case A = 0

when (z1, z2) = (1/4 + n/2, 0) for n an arbitrary integer. (These last solutions are most

easily seen in the limit τ2 ≫ 1, for which appendix A.2 shows
∑

r Fr ∝ cos(2πz) — see

eq. (A.12).)

To obtain a supersymmetric extremum without destabilizing S requires the bracket

in (3.9) to be zero. When A = F
1/N
r0

these extrema are at z = (n/2,mτ2/2) (which
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includes as special cases the points where A(z) = 0). When A =
∑

r Fr the solutions

instead are (z1, z2) = (n/2, 0), and (n/4, τ2/2), with n an integer. (Again these latter

solutions are simplest to see in the large τ2-limit.) Which of these are maxima or minima

depends on the parameters used (and in any case can change after including an uplift term,

as we shall see).

The potential at this minimum becomes

V AdS
F = − 3|Wmin|2

X(T + T )2
= −3 a2|A|2X0

4N2t20
e−2as0/N . (3.10)

For τ2 ≫ 1, evaluation of the potential near this minimum shows it to be flattest along the

z2 direction, while for τ2 ≪ 1 it is instead flatter along z1.

3.2 Uplifting

We next consider lifting this solution to positive values of the potential at the minimum,

using either a D-term potential or that of an anti-D3 brane.

D-term potential. If a D-term potential due to magnetic flux located at a brane at fixed

point zr were to exist, either due to the absence of charged matter fields, Qx, or if their

complete potential is minimized at Qx = 0, it would depend on X and T in the following

way: VD,r ∝ (Kαηα)2/Re(fr). Here ηα measures the linear combination of axion fields

which is gauged by the magnetic flux in question, which the discussion of previous sections

shows never points in the S direction. So for the fields of present interest Kαηα ∝ KT ∝ 1/t,

and so

V r
D(S, z) =

Er

Re(fr)t2
, (3.11)

where Er is a constant.

But there is a consistency problem with having T shifting in this way under a U(1)

symmetry without also having charged fields Qx be present. The problem is that if T shifts

in the way required to appear in D, then this same symmetry precludes the existence of a

term in the superpotential like Be−bT , as was required to stabilize T . Charged fields like

Qx can resolve this kind of paradox because their presence in W can combine with T to

make the superpotential invariant. We refer the reader to refs. [21, 22] for more detailed

discussions of these issues.

Because of this issue, we perform our main search for inflation using an alternative

source of uplifting, such as from an anti-D3 brane. This is what we use in our most

successful inflationary scenario, described below. However, following [16] we also seek

inflation using eq. (3.11), in the spirit that it might ultimately turn out to capture the low-

energy dynamics of some better motivated, but more sophisticated, string constructions.

In particular, we use this form of uplifting when exploring the limit where the D3 and

D7’s are in close proximity, in order to try to follow as closely as possible the analysis of

ref. [16].

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
5
8

Anti-D3 brane. When uplifting with an anti-D3 brane, we assume the potential to

depend only on the volume, with the form discussed above

VD3 =
E

Vp
=

E

Xp/2(T + T )p
(3.12)

which uses V =
√

X(T + T̄ ). As before, the power is p = 2 for anti-branes in unwarped

regions and p = 4/3 when the antibrane is deep within a warped throat [6], and so we

use p = 4/3 in our main search for inflationary solutions. We have checked that similar

solutions also exist when p = 2, however.

Since neither X nor Re(fr) depend on the axions, α, β, an uplifting potential of either

D-term or antibrane type would not alter their minimization.

4 Slow-roll Inflation

We next search the potential for the fields S, T and z, seeking slow-roll regions for which

the effective single-field slow-roll parameters, ǫ and η, can be made small. We find that

inflation does not generically arise, but — as for many other brane-inflation models —

slow roll can occur provided some of the parameters in the potential are mildly tuned

(see, however, [26] for potentially less tuned alternatives). In this section we describe two

such examples.

We first search for slow-roll regimes that do not rely on the existence of a D-term

potential, by uplifting using an antibrane. We find that slow-roll inflation is possible to ob-

tain near a saddle point, where we use a superpotential generated by gaugino condensation

localized at a single fixed point on the torus, with the D3 located as far away as possible

from this fixed point. In order to achieve inflation the shape of the torus must be tuned

to be very close to square, to within a part in 104, but once this is done the resulting slow

roll is largely insensitive to the other parameters in the F -term potential.

The second example we present is a direct analog of the scenario proposed in ref. [16],

with the D3 very close to one of the D7 fixed points. Two D-terms are added in this setup,

one to drive inflation and the other to uplift the potential. In doing so we follow [16] and

put aside the concerns given above whether the charged matter fields cause the D-term to

relax to zero. We perform our search numerically, using the full expressions for VD and

VF , rather than searching analytically using a simplified parametrization of the potential.

Taking the inflaton to be primarily in the z1-direction, we do not find any example that

resembles standard D-term driven hybrid inflation (and we identify the reasons for this

difference with [16]). Instead, we find that inflation can occur at an inflection point of the

potential, for which the D-term and F -term contributions to ǫ = 0 and η are fine-tuned to

be small.

4.1 Axionic inflation

We start with our best example of D3-D7 inflation. We imagine gaugino condensation to

occur only at a single fixed point, zr = 0, leading to a superpotential term as given by (3.4),

W = W0 +
[

A0e
−aSϑ2

1(πz|τ)
]1/N

+ Be−bT (4.1)
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Figure 1. Illustration of warped D3 uplifting with D3 confined to top of throat.

which absorbs a conventional sign into the constant A0.

We take the uplifting potential provided by a D3, localized in a throat, leading to a

contribution as in eq. (3.12) with p = 4/3. (Although we find the warped version of this

picture most appealing, we have also checked that inflation can work without warping.)

Finally, as discussed at length above, we imagine the D3 cannot move in the K3 directions

but is mobile within the T2. We assume the D3 is not near the throat, so the uplifting

potential is the only antibrane perturbation to the D3 motion. Notice that this uplifting

depends on the D3 position through the factor X = 2[ReS − ω(z, z̄)] of eq. (3.12), and

this plays an important role in the shape of the D3 potential. Although we believe this

construction — illustrated in figure 1 — to be plausible, we leave a detailed derivation for

future work.

For the warped configuration, it is straightforward to find an almost-flat saddle point

in the potential, for any values of the superpotential parameters a, b,A0, B. This is done

simply by tuning the single parameter τ2 ≡ Im(τ), which determines the shape of the torus.

Setting τ1 ≡ Re(τ) = 0 for simplicity, we find that if τ2 is close to 1 (so that T2/Z2 is nearly

square) we get a flat potential close to the antipodal point, z = 1
2(1+ τ), of the fixed point

source at z = 0. The surprise is that the unstable direction turns out not to be in the z1-z2

plane, but rather is a linear combination of z1 and α = Im S, the axion associated with the

volume modulus.

An explicit example leading to an inflationary slow roll is given by the parame-

ter choices

W0 = −4.14 × 10−7, a = b = 2π, A0 = 0.538, B = 0.912, N = 4, τ1 = 0, z2 =
τ2

2
, (4.2)

which corresponds to a minimum at s0 = 11.54, t0 = 2.802 and β = 0. Uplifting requires

taking E = 1.70217×10−13 (when p = 4/3). These values were chosen to satisfy the COBE

normalization of the power spectrum, P = 4 × 10−10, at the scale which we take to be 55

e-foldings before the end of inflation. For this purpose we approximate P as H4/(50π2Lkin)

where Lkin is the kinetic energy of the fields.
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closeup 
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Figure 2. Left: the potential for the warped uplifting saddle point in the the z1-2πα plane. Right:

closeup of the saddle point region at z1 = 1/2, 2πα = π.

The resulting potential is displayed in figure 2 as a function of the remaining fields z1

and α. The inflationary saddle point at z1 = α = 1
2 is visible in the figure, at which the

unstable direction numerically evaluates to

φ̂ =
1√
2

α̂ − 1√
2

ẑ1 , (4.3)

where ẑ1 and α̂ denote unit vectors in these two coordinate directions of field space. (The

components in the directions of the other, heavy fields are smaller than this by a factor

of 10−8.) An initial condition near this saddle point initially moves in the direction given

by eq. (4.3), which is also the direction towards the local minimum at z1 = α = 0. In the

resulting motion the D3 falls from the fixed point at z = 1
2(1 + τ) to the fixed point at

z = 1
2τ , driven by the nonperturbative physics situated at z = 0.

We regard the values of t0 and s0 to be just within the domain of validity of the α′ and

gs expansions, although ideally larger values would be preferable.5 With the parameters

chosen we have as0/N ≃ b t0 ≃ 18, ensuring the suppression of the nonperturbative super-

potential. Furthermore V ≃ √
s0 t0 ≃ 10, so known α′ corrections to K are of order [27]

δK

K
≃ χζ(3)

2(2π)3g
3/2
s V lnV

≃ 0.1

g
3/2
s V lnV

, (4.4)

where χ = 48 is the Euler number of K3 × T2/Z2 and ζ(3) ≃ 1.2. For V ≃ 10 this is of

order 3/V lnV ≃ 0.1 (or 0.6/V lnV ≃ 0.03) if gs ≃ 0.1 (or gs ≃ 0.3). Comparatively small

values for t0 and s0 are driven by the requirement that the potential be large enough to

reproduce the observed primordial scalar perturbations, and are a reflection of a common

tension in brane inflation models between this condition and the control over the gs and α′

5It is our use of N = 4 in w(S, z) while N = 1 for the Euclidean D3-brane superpotential Be−bT ,

together with our requirement that A0, B < 1 (to avoid having a large energy scale in the nonperturbative

superpotential) that leads to our obtaining the hierarchy t0 ∼= s0/4. (Note that eq. (3.7) shows that

exponentially large values of B would be required to make t0 ∼ s0.) On the other hand, if we take N = 1

for w(S, z) then the values s0 ∼ t0 ∼ 10 put the energy scale of the potential far below that needed for the

COBE normalization.
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expansions. We regard the present calculation as being sufficiently accurate to demonstrate

the existence of a slow roll, motivating a more detailed search for inflation with larger

s0 and t0.

We remark in passing that our numerics follow all six of the fields s, t, α, β, z1 and z2,

but for the inflationary example considered here it turns out that the variation of the heavy

fields s, t, z2 and β found numerically during inflation proved to be negligible, the largest

being 1 part in 106 for s. This can be understood analytically, and is consistent with the

suppression of the perturbations of these fields by their masses, which are heavy compared

with the inflaton directions. We thus find it to be a good approximation to ignore the

slight motion of the heavy fields during inflation, even though our numerical code evolves

all six of the fields subject only to the slow-roll approximation.6

Remarkably, the potential at the saddle point is acceptably flat for slow-roll inflation

for a reasonable range of parameter values in the vicinity of those of eq. (4.2), provided we

tune τ2 to be in the range

τ2 = 1.00174 − 1.00184 . (4.5)

This range corresponds to the η parameter at the saddle point in the interval −0.04 <

ηsaddle < 0; see figure 3. The lower value of τ2 gives the larger value of ηsaddle, and

τ2 = 1.00174 yields 230 e-foldings when starting at a displacement of 0.001 from the saddle

point. Although τ2 must be tuned at the level of 1 part in 104, it is only this one parameter

in the superpotential that needs such fine adjustment. It is suggestive that the required

value for τ2 is so close to τ2 = 1, which corresponds to a square torus, and although the

symmetry of this geometry has been argued to lead to special cancellations amongst inter-

brane forces [4], we do not have a symmetry argument for why the inflationary value of τ2

is not precisely at 1.

If we change the parameter values in (4.2), the position of the saddle point typically

shifts, as does the unstable direction. For example with W0 = −10−6/(2π)3/2, a = 3π,

A = 2/(2π)3/2, B = 3/(2π)3/2, b = π and N = 1 we find the saddle point moves to z1 = 1
2

and α = 1
3 , with the unstable direction becoming φ̂ = 0.97266 α̂−0.23221 ẑ1. However, the

tuning needed to get inflation again simply requires τ2 close to unity; with τ2 = 1.00673

giving about 300 e-foldings of inflation.

It is also possible to get inflation from unwarped D3 uplifting, where the dependence

of Vup on the volume goes like 1/V2 instead of 1/V4/3. In this case, using exactly the

same superpotential parameters as (4.2), we find that the locations of the minima and

saddle points get interchanged, with the minimum at (z1, α) =
(

1
2 , 1

2

)

and the saddle at

(z1, α) = (0, 0) (and z2 = 1
2τ2 as before). However the value of τ2 needed for flatness is now

farther from unity: τ2 = 1.61683. The direction of the inflaton is exactly the same as for

the corresponding warped case, eq. (4.3).

Although the qualitative features of our scenario are robust to changes in the super-

potential parameters, they are on the other hand rather sensitive to the detailed form of

6Making the slow-roll approximation in the numerical evolution greatly reduces the computational bur-

den, while still giving the correct trajectory during inflation, and also allowing sufficiently accurate deter-

mination of when inflation ends.
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Figure 3. Spectral index versus η evaluated at the saddle point; dots are exact numerical values,

while the line is the analytic prediction using the method of ref. [29].

the uplifting potential (3.12). We find that the inflationary mechanism fails if one tries

to replace the D3 uplifting with a D-term, for example located at the D7 stack at z = 1
2 .

Either the η parameter cannot be tuned to be small, or the D3 is attracted to the D7 which

sources the D-term, leading to annihilation and the removal of the uplifting. Moreover,

the z2-dependence appearing in the uplifting term through X is also important; neglecting

this dependence leads to an additional negative eigenvalue of the curvature matrix, along a

linear combination of the s and z2 directions, which spoils the slow roll at the saddle point.

Another potential source of tuning arises because the antipodal point, z = 1
2 (1 + τ),

where the inflationary saddle arises is coincident with one of the T2/Z2 fixed points. As a

result one might worry about additional D3 interactions with the D7 and O7 planes that

reside there. Although neither the superpotential or uplifting physics is located at this

point, this need not preclude there being other D3-D7 instabilities which might compete

successfully with the inflationary slow roll. (On the other hand, the same processes may

be quite welcome once the D3 encounters the D7 stack at the endpoint of the roll, when

z = 1
2τ .) To avoid these difficulties we therefore demand either that no such physics exist

(such as if the D3 and relevant D7’s remain mutually BPS), or that the D3 not approach

the apex of the saddle point to within closer than the string scale. This latter condition

is easier to achieve the larger is the torus volume, although there can be some tension

between having sufficiently large volumes and keeping the potential large enough during

inflation to get acceptably large primordial scalar perturbations.

Not surprisingly, this scenario is very similar in its predictions for primordial fluctua-

tions to those of racetrack inflation [18], which is also based on axion motion from near a

saddle point in the potential. Just like in the racetrack model, we find by numerical evo-

lution that the spectral index — which we define at the canonical 55 e-foldings before the

end of inflation — cannot exceed ns = 0.95 even when the potential is arbitrarily flat near

the saddle point. A simple explanation of the robustness of this result is given in ref. [29],
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Figure 4. A figure adapted from ref. [16] which illustrates their inflationary configuration.

which shows how it can be understood from the dominance of the terms V0 − 1
2m2φ2 in

the inflaton potential until the end of inflation. In figure 3 we display the variation of ns

with the value of the η parameter evaluated at the saddle point (ηsaddle), both for the exact

numerical determination (dots) and the analytic approximation (line) of ref. [29].

4.2 A D-term driven example

Our second inflationary example is motivated by the inflationary solution found in ref. [16],

which we first briefly describe.

The D-term inflationary setup. Ref. [16] seeks a stringy analogue of D-term infla-

tion [30]. To do so they consider a nonperturbative superpotential Wnp generated by a

stack of D7 branes at the fixed point z = 1
2 of T2/Z2. The inflationary energy density and

the uplifting potential is modelled as a Fayet-Iliopoulos D-terms, given by adding fluxes

to the D7 branes situated at z = 0. Inflation occurs when the D3 is in close proximity to

z = 0, to which it falls driven by the one-loop Coleman-Weinberg (CW) potential obtained

using the threshold corrections obtained from integrating out massive D3-D7 string modes

VFI =
g2ξ2

2

[

1 +
g2U(x)

16π2

]

, (4.6)

where g is the gauge coupling for the D7 brane at z = 0, ξ is a constant and x is related

to the canonically normalized inflaton, φ ∝ z1, by x = φ/
√

ξ. (The large mass associated

with the z2 coordinate allows it to be set safely to zero.) The potential U(x) is

U(x) = (x2 + 1)2 ln(x2 + 1) + (x2 − 1)2 ln(x2 − 1) − 4x4 ln x − 4 ln 2 . (4.7)

The slow roll occurs as z rolls down the CW-potential, and ends when the D3-D7 waterfall

fields condense to cancel the D-term. To obtain a Minkowski or dS vacuum after inflation

an additional uplifting term must be added, perhaps elsewhere on the torus, although its

explicit form is not considered in ref. [16]. This setup is illustrated in figure 4.
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To gain an analytic understanding of the inflationary dynamics near φ = 0 the authors

of ref. [16] observe that U(x) can be well approximated by a logarithm in this regime,7 and

the F -term potential can be expanded as a power series about z = 0, leading to

V ≃ V0 + D ln

(

φ2

ξ

)

− m2

2
φ2 +

λ

4
φ4 , (4.8)

where V0 = 1
2 g2ξ2 and D = g2V0/(8π

2). The coefficients of this potential are regarded as

implicit functions of S, T and τ — all of which are regarded as being stabilized. m2 and λ

are obtained by expanding VF in powers of z.

With these approximations the potential approaches that of usual D-term hybrid infla-

tion in the regime as φ → 0, where the first two terms dominate. A slow roll in this regime

is possible provided D/V0 = g2/(8π2) can be made much smaller than (φ/Mp)
2. But this

is not the only possibility; inflation can also occur for larger D3-D7 separations. Indeed,

provided m4 > 4λD the potential V has a local maximum at φ2
max = (m2 − δ)/(2λ), whose

curvature is given by V ′′(φmax) = −2δ where δ =
√

m4 − 4λD. A slow roll may therefore

also be sought near this local maximum. If m4 ≃ 4λD (and so δ ≃ 0) this maximum

coalesces with a local minimum at φ2
min = (m2 + δ)/(2λ) to produce an inflection point.

The idea is thus to identify parameters to ensure that the slow roll parameter η ∼= 0.015,

so that the spectral index matches the WMAP5 value of ns
∼= 1 − 2η = 0.96, and once

these are found see if such parameters can be obtained from underlying brane dynamics

on K3 × T2/Z2.

Supergravity search. We seek to reproduce this scenario numerically within the low-

energy supergravity. This differs from the analysis of ref. [16] in two ways. First, we

describe the D-term physics using the full D-term potential, eq. (3.11), when numerically

seeking a slow roll. Second, we also add an explicit uplifting term, which for definiteness we

also take to be a D-term arising from a flux localized on the D7’s located at z = 1
2 (i.e., at

the same location as the gaugino condensation D7’s). Using this potential we numerically

compute the potential for z by evaluating the moduli fields at their instantaneous minima

V (z) = V (z, S0(z), T0(z)). We then search for an inflationary slow roll with the D3 close

to the D7’s at z = 0.

The best example of slow-roll inflation we found in this setup arises near an inflection

point of the scalar potential (described below), corresponding to tuning the parameter

δ ≃ 0 in the approximate potential of eq. (4.8). We did not find examples of inflation

arising at the local maximum, for which the potential was also large enough to satisfy

the COBE normalization. We find that once m2 is made sufficiently small to get a small

curvature at the maximum, the quartic term in eq. (4.8) becomes important, leading to the

limit δ ≃ 0. This can be seen in the numerical evaluation of the potential shown in figure 5.

Although we did examine a broad class of parameters, we were not exhaustive enough

to preclude the potential existence of the inflationary example obtained in ref. [16]. In

particular, our choice of fr = 0 in eq. (2.17) relates our effective value for g2 to the value of

s at its minimum, and as a consequence the choices leading to a slow roll tend to destabilize

7The log approximation is valid in the regime with φ ≫ ξ during inflation.
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Figure 5. Left: Lowest curve is uplifted F-term potential; upper curves are VF + ǫiVD, where VD is

the inflationary D-term, for an increasing series of values of ǫi ≈ 10−6 of the strength which would

be needed to uplift using this VD (from D7’s at z1 = 0) rather than the uplifting VD coming from

D7’s at z1 = 1/2. Right: fine-tuned inflection point potential with parameters given by (4.9, 4.10).

the potential for s. We do not know if the same need be true once the freedom to adjust

fr is used.

Inflation at an inflection point can be found by tuning the inflationary D-term (while

adjusting the uplifting D-term to ensure a Minkowski vacuum at the end of inflation). To

see this, choose for definiteness τ1 = 0 and τ2 . 2 and turn off the inflationary D-term.

Then the potential has a local minimum at small values for z1. As illustrated in figure 5,

this local minimum becomes increasingly shallow until it eventually turns into the desired

inflection point as the inflationary D-term is turned back on.

A specific example uses τ1 = 0, τ2 = 0.6, z2 = 0, with F - and inflationary D-term

potential parameters

N = 1, E2 = 1.56512 × 10−8, A0 =
1

(2π)3/2
and a = b = 2π . (4.9)

where E2 is the strength of the uplifting D-term located at z = 1
2 . The values of B

and W0 are chosen by solving DT W = DSW = 0, using eqs. (3.8), to obtain minima at

s0 = t0 = 5/π = 1.592. Of these parameters only τ is relatively important, since its value

determines the sign of m2. The other parameters are randomly chosen, apart from the

coefficient of the inflationary D-term, whose value must be tuned to

E1 = 2.062673254 × 10−9 (4.10)

in order to obtain the desired inflection point, which occurs near z1 = 0.107024.

Starting sufficiently close to this point, and tuning E1 as above, one can obtain 5100

e-foldings of inflation. However, this number decreases rapidly with less tuning. To get

60 e-foldings, E1 must be increased only by 1 part in 106, otherwise the potential is not

sufficiently flat. Other examples we tried require comparable levels of fine-tuning, which

is somewhat more severe than the part-per-103 tuning that is required in other brane-

inflation models.

Although it is encouraging that inflation in this regime is possible at all, it is a dis-

advantage that inflation occurs at an inflection point rather than a maximum since this
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makes it is much more sensitive to the initial conditions. For the above numbers the ini-

tial value of z1 cannot be increased by more than 6% from the inflection point without

overshooting it and so ending inflation too quickly. Furthermore, since inflation is not at a

maximum we cannot appeal to general arguments of eternal inflation [28] to explain these

initial conditions.

5 Conclusions

This paper reports on the results of a detailed numerical search for inflation in Type IIB

vacua compactified (with modulus-stabilizing fluxes) on K3 × T2/Z2. The search is per-

formed using the 4D field equations of the low-energy effective theory, which is constructed

using familiar ingredients: an F -term potential generated by fluxes and branes together

with some sort of uplifting physics.

There are two underlying motivations for performing this search. The first starts from

the observation that so much is known about Type IIB compactifications on K3 × T2/Z2,

because much is known about string behaviour on both K3 and the orbifolded torus. The

relative simplicity of these geometries makes the study of their dynamics valuable, since

most other instances of string inflation arise in much more complicated contexts where

corrections can be more difficult to identify and control.

A second motivation for this study is the great appeal of the D3-D7 inflationary mech-

anism [2], which has the promise of providing inflationary examples with a supersymmetric

final state, inflation driven by D terms, and a potentially interesting cosmic-string signa-

ture. K3× T2/Z2 is a natural place to study this mechanism in detail because it naturally

contains stacks of D7 and O7 planes wrapping K3 as well as a nice flat toroidal geometry in

which to hope to find slow-roll D3 motion. Furthermore, new tools to describe this motion

in terms of the low-energy 4D effective field theory have recently been developed [13–16],

and their use allows a more systematic study of the degree to which modulus stabilization

interferes with the conditions required for slow-roll inflation.

Using this 4D theory we numerically search for slow-roll inflation. To do so we follow

three of the possible low-energy complex fields: the D3’s toroidal position, z; the K3

volume modulus, S; and a modulus, T , dual to one of the 22 nontrivial 2-cycle volumes on

K3. We consider two kinds of uplifting, either that due to an anti-D3 brane [9], or by a

flux-induced D term potential [17]. We follow earlier workers in using this last type despite

some of the consistency problems [21, 22] it raises when realized in string vacua. We do so in

the spirit that similar terms might arise from more complicated string constructions, and it

may therefore be worth seeing whether they can support nontrivial inflationary dynamics.

Our search identifies two kinds of slow-roll regime. What we regard to be the most

attractive has a D3 fall slowly between two D7 stacks, driven by a modulus-stabilizing

superpotential (perhaps produced by gaugino condensation) located on a third stack. Up-

lifting is achieved by adding a D3 in a warped throat. A slow roll is then possible when

the brane is at the antipodal point from the modulus-stabilizing stack, provided the torus
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is adjusted to be almost perfectly square (i.e. τ = i) 8. The low-energy scalar potential has

a saddle point at this position, whose unstable inflaton direction turns out to be a linear

combination of the D3 position, z1, and the axion, α = Im S, associated with the K3 vol-

ume modulus. The resulting inflationary picture resembles earlier ‘racetrack’ models [18],

and shares their generic prediction ns <∼ 0.95. Although the inflation is robust against

changes to the superpotential parameters, it is sensitive to the kind of uplifting involved

and requires a 1-in-104 tuning in the value of τ .

The second inflationary regime found generates a superpotential (and places an up-

lifting flux) at one fixed point, z = 1
2 , and places another inflationary D-term generating

flux on a second brane stack at z = 0. Inflation is then sought with the D3 very close

to z = 0, in the hopes of obtaining standard hybrid D-term inflation as the D3 dissolves

into the D7’s there. Our search here led to inflation at an inflection point, provided the

inflationary D term is tuned to a part in 106. But because it arises at an inflection point,

this inflationary scenario is sensitive to the inflaton’s initial conditions due to a potential

overshoot problem. In this case use of the full effective 4D potential makes finding inflation

more difficult than might be thought based on simpler approximate potentials.
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A Useful relations

In this appendix we collect various useful relations and identities that are used in the text.

A.1 No-scale condition

We briefly show here that any Kähler function, K(T, T ) = K(T + T ), which satisfies the

scaling identity

K(λT, λT ) ≡ K(T, T ) − 3 ln λ , (A.1)

for arbitrary moduli Tα and constant λ, must also satisfy the no-scale condition

KαβKαKβ ≡ 3 . (A.2)

8Antipodal inflation with unwarped D3 lifting is also possible; in this case the tuning of the torus is not

so close to being square.
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This establishes the no-scale property of the Kähler function of interest in the main text,

K = K(S + S, Ti + T i, i(z − z̄), i(τ − τ)), which satisfies these assumptions.

To establish the result we first recognize that because K is a real function only of the

combination (T + T )α, we may ignore the distinction between derivatives with respect to

Tα and T
α
: Kα = Kα = ∂K/∂Xα, where Xα = (T + T )α. Next we differentiate eq. (A.1)

once with respect to λ, and then a second time with respect to Tα, giving

XβKβ(λX) ≡ − 3

λ
(∂/∂λ) (A.3)

Kα(λX) + λXβKαβ(λX) ≡ 0 (∂2/∂Tα∂λ) . (A.4)

Contracting two copies of eq. (A.4) together using the inverse matrix Kαγ then gives

Kαγ(λX)Kα(λX)Kγ(λX) = λ2Kαγ(λX)Kαξ(λX)Kγρ(λX)XξXρ

= λ2Kαβ(λX)XαXβ , (A.5)

which may be further simplified by contracting eq. (A.4) with Xα and using eq. (A.3),

to get

Kαγ(λX)Kα(λX)Kγ(λX) = λ2Kαβ(λX)XαXβ = 3 . (A.6)

The desired result is now obtained by evaluating at λ = 1.

A.2 Theta functions and periodicity

We adopt the following definition for the Jacobi theta function

ϑ1(u|τ) = ϑ1(u; q) ≡ −i
∞
∑

n=−∞

(−)ne(2n+1)iuq(n+1/2)2

= 2q1/4
∞
∑

n=0

(−)nqn(n+1) sin[(2n + 1)u] , (A.7)

with q = eiπτ . This satisfies

ϑ1(u ± π|τ) = −ϑ1(u|τ)

ϑ1(u ± πτ |τ) = −q−1e∓2iuϑ1(u|τ) , (A.8)

under the displacements that define the periods of the torus T2.

The combination Fr(z, τ) = ϑ1[π(zr − z)|τ ]ϑ1[π(zr + z)|τ ] appearing in the superpo-

tential therefore transforms as

Fr(z + 1, τ) = Fr(z, τ)

Fr(z + τ, τ) = e−4iπz−2iπτFr(z, τ) , (A.9)

for any zr. Clearly the combination e−aSFr(z, τ) is therefore invariant under the combined

transformations (z, S) → (z + 1, S) and

z → z + τ , S → −2πi

a
(2z + τ) . (A.10)
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When τ2 >∼ 1 we have |q| ≪ 1 and so the above series for ϑ1 is well approximated by

its first terms, ϑ1(u|τ) ≃ 2q1/4 sin u, and so

Fr ≃ 4q1/2 sin[π(zr − z)] sin[π(zr + z)] = 2q1/2
[

cos(2πz) − cos(2πzr)
]

. (A.11)

Using z0 = 0, z1 = 1
2 , z2 = 1

2τ and z3 = 1
2 (1 + τ), we have respectively cos(2πz0) = 1,

cos(2πz1) = −1, cos(2πz2) = cos(πτ) and cos(2πz3) = − cos(πτ). Notice in particular that

in this limit
∑

r=0,1

Fr ≃
∑

r=2,3

Fr ≃ 1

2

3
∑

r=0

Fr ≃ 4q1/2 cos(2πz) . (A.12)

A.3 Scaling behavior

This appendix displays a useful scaling property that allows one to relate numerical results

for different choices of parameters.

The scalar potential arises as the sum of an F -term, D-term and an up-lifting contri-

bution, V = VF + VD + Vup, with the D-term and uplifting contributions having the form

Vup =
E

Xmtn
, (A.13)

and

VD =
Er

Refr t2
, (A.14)

where t = Re T , E and Er are constants, X = 2[s − c g(z, z̄)], s = ReS and fr = S −
(1/a)h(z). Here g and h are functions whose form is not important in what follows. The

constant c is related to a by ac = 2π, due to the requirement that the potential be periodic

under the toroidal shift z → z + τ . The F -term potential is similarly computed using the

Kähler potential

K = − lnX − 2 ln(T + T ) , (A.15)

and superpotential

W = W0 + A(z)e−aS + Be−bT . (A.16)

Here W0, B, b and a are constants — with a the same constant as appears in fr — and

A(z) is a function whose detailed form is not important for the argument now to be made.

These contributions to the scalar potential have the property that they scale simply

under the following redefinitions

s → λ1s, t → λ2t, a → a/λ1, b → b/λ2, and E → λm−1
1 λn−2

2 , (A.17)

with z, Er, A, B and W0 held fixed. With these choices we have X → λ1X, Refr → λ1Refr

and so W → W , eK → eK/(λ1λ
2
2). This makes VF , VD and Vup all scale very simply:

V → V

λ1λ2
2

. (A.18)

Because VF is quadratic in W and its derivatives, the F -term potential also rescales

as VF → λ2VF under the scalings

x → λx, where x = {A,B,W0} . (A.19)
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